Google открыла код для машинного поиска экзопланет по данным с «Кеплера»


Фрагмент Солнечной системы (слева) в сравнении с восьмипланетной системой Kepler 90 (справа). Обнаруженная нейросетью Google экзопланета Kepler 90i с периодом обращения 14 дней отмечена оранжевым цветом

Исследователи находят всё новые применения нейросетям для обработки изображений. Теоретически возможности машинного обучения с подкреплением (DL) поистине безграничны, но когда смотришь на реальные достижения этих программ — среди них не так уж много действительно полезных на практике. Чаще всего нейросети достигают успеха в какой-нибудь игре, выдавая в качестве положительного стимула количественный результат в очках. Но какой смысл, что ваш ИИ научился отлично играть в Counter-Strike, если он не способен реализовать свои знания на практике и обезвредить настоящих террористов?

Но в отдельных случаях DL всё-таки используют не только для изучения самого DL, но и для решения практических задач, важных для человечества. Например, они используются в здравоохранении, квантовой химии и ядерной физике (везде даны ссылки на исследования Google). Теперь к этому списку присоединилась астрофизика. Инженеры из подразделения Google Brain нашли две новые экзопланеты, обучив нейросеть анализировать данные с космического телескопа «Кеплер». Хотя это всего лишь предварительные результаты после обработки 670 звёздных систем, но они доказывают применимость машинного обучения в данной области.

8 марта 2018 года разработчики Google выложили на GitHub исходный код программы для обработки данных с «Кеплера», программ обучения нейросети и выдачи прогнозов по самым перспективным звёздным системам.
Читать дальше →
Google открыла код для машинного поиска экзопланет по данным с «Кеплера»
Source: geektimes